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Modeling of metal electrodeposits: Analytical solutions

Weiguang Huang* and D. Brynn Hibbert
School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
(Received 27 February 1995)

From a model of metal electrodeposition, expressions of the concentration and current for diffusion,
convection, and voltage in one dimension are derived. Our models are exact solutions of differential
equations. The effect of dissolution of the anode, direction and speed of convection, and voltage on the
concentration, current, and growth speed are determined. The origin of currents that are independent of

the applied potential is explained.

PACS number(s): 68.70.+w, 82.45.+2z, 47.65.+a, 81.15.Lm

I. INTRODUCTION

Mathematical modeling of electrochemical deposition
has attracted attention because it helps our understand-
ing of the growth mechanism and may explain experi-
ments from theory. Chazalviel [1] has proposed a set of
differential equations as a mathematical model, which
takes into account the displacement of the cations and
anions in the solution due to both diffusion and electrical
migration. His model gives a deep insight into the
growth mechanism as analytical solutions for concentra-
tion, current, and potential in the steady state are de-
rived. Consider a linear cell containing a metal salt with
cation charge z, and anion charge z, at bulk concentra-
tion C° with the cathode at x =0 and the anode at x =L.
By dividing the concentration map from an arbitrary
boundary x; into two regions, the space-charge region
(0 <x <x;) and the quasineutral region (x; <x <L), and
considering both diffusion and electrical migration, he
obtained expressions for the concentration in the
quasineutral region, 2C°%x —x;)/L, and for the current
density —2eDC%1+z,/z,)/L, where e is the electric
charge and D is the diffusion constant. However, this
model did not consider convection. Fleury, Chazalviel,
and Rosso [2,3] have shown experimentally that there is
convective motion in the vicinity of the cathode, near the

~growing tips. This convection leads to an additional
transport mechanism: the advection of cations and anions
in the fluid flow. By introducing convection into
Chazalviel’s model, Fleury, Kaufman, and Hibbert [4] de-
rived the concentration and current expressions from a
model of diffusion, convection, and electrical migration,
and presented the concentration profiles as a function of
convection speed. Current that is independent of the ap-
plied potential is a problem in Chazalviel’s model. The
same problem is still in Fleury et al.’s current expres-
sions for both the general case and the case of very small
fluid speeds, although both models involve electrical mi-
gration and potential.
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A feature of the work presented in this paper is the
effect of different boundary conditions resulting from
different models of the dissolution of the anode. Experi-
mental arrangements may involve a metallic anode which
dissolves (e.g., Cu, Zn) or one at which oxygen is evolved
(e.g., Pt). We propose models of electrochemical deposi-
tion with diffusion, convection, and electric fields for
different dissolutions of the anode in one dimension.
From differential equations we derive expressions of the
concentration and current. Our models are exact solu-
tions of differential equations though our mathematical
treatment is simpler than that found in the literature.
Then we discuss the effect of dissolution of the anode, the
direction and speed of convection, and voltage on the
concentration, current, and growth speed. By compar-
ison with the results in the literature, we demonstrate
that Chazalviel’s concentration and current density ex-
pressions are in fact valid only for pure diffusion, instead
of for both diffusion and electromigration. We can ex-
plain the origin of Chazalviel’s and Fleury et al’s
currents that are independent of the applied potential.

II. MODEL

We consider the electrochemical deposition in a two-
dimensional rectangular thin cell of width W and length
L with two linear electrodes (cathode at x =0 and anode
at x =L). Assume that the deposit grows very slowly and
is governed by diffusion, convection, and electric fields.
For a practical value of the concentration, the charged
layer is very narrow and the cell will be quasineutral, so
the electric field gradient can be ignored (i.e.,
OE /0x =0). If the deposit is flat, we assume that a
smooth and uniform deposit grows (i.e., the deposit looks
like a flat uniform sheet with a straight edge). In this
case the two-dimensional differential equation can be ap-
proximately reduced to the one-dimensional steady-state
differential equation. The concentration C satisfies the
differential equation

FC_ ac_ aC _
ox? ax Pax

where v is the convection velocity (v <0 for convection
toward the cathode, and v> 0 for convection toward the

0, (1
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anode), u is the mobility of the ions, the electric field
E=—U/L, and U is the voltage applied between two
electrodes. The first term is the diffusion term, the
second term is the convection term, and the last term is
the electric field term. The cation is totally reduced at
the cathode, so the concentration on the surface of the
deposit is zero. Equation (1) may be solved for two cases
of dissolution at the anode.

Case 1. Dissolution of the anode keeps the total num-
ber of cations unchanged. The boundary conditions are

C=0 atx=0 and [‘Cdx=C°L . @

Case 2. Dissolution keeps C=C? (the bulk concentra-
tion) at the anode or at an arbitrary boundary L, but the
total number of cations may be changed. We presume
this arises from oxygen evolution at the anode or hydro-
gen evolution at the cathode. This case may simulate a
diffusion layer which is maintained at a particular dis-
tance from the cathode. The boundary conditions are

C=0 atx=0 and C=C° at x=L . 3)

In order to write the differential equation in a dimen-
sionless form, we set ¢ =C /C° for the dimensionless con-
centration, V=vL /D for the dimensionless convection
velocity, X=x /L for the dimensionless distance, and
M=ulL /D for the dimensionless mobility. By multiply-
ing L2/(DC°) on both sides of Eq. (1), it is rewritten in a
dimensionless form as

3% dc ac

ax? VaX MEaX 0. (4)
The boundary conditions (2) and (3) respectively for cases
1 and 2 become

¢=0 at X=0 and [ 'cdx=1, &)

¢c=0 at X=0 and c=1 at X=1. (6)

A. Model for diffusion

First consider the simplest case of pure diffusion,
where V=0 and E=0. So Eq. (4) is reduced to a single
diffusion term in the equation as a function of the dis-
tance X from the cathode:

9% /3Xx*=0. (7

By integrating this equation twice, we get the solution for
the concentration

c=k,X+k, , ®)

where k| and k, are constants and their values depend on
the boundary conditions.

For case 1 (dissolution of the anode keeps the total
number of cations unchanged) by applying the boundary
conditions (5) to Eq. (8), we obtain k=2 and k,=0. By
replacing k, and k, with their values, Eq. (8) is written as

c=2X

or
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Cc=2C%/L . 9)

This expression shows that the concentration is linear
across the cell.
The diffusion current density J,, is

0

=—2eD%C = 5. E"
Jj1=—zeD ax 22eDL , (10)

where z is the number charge of the ions and e is the elec-
tronic charge.

For case 2 [dissolution of the anode keeps C=CP° (the
bulk concentration) at the anode], by applying the bound-
ary conditions (6) to Eq. (8), we obtain k; =1 and k,=0.
By replacing k,; and k, with their values, Eq. (8) is writ-
ten as

c=X
or
Cc=C%/L . (11)

This expression shows that the normalized concentration
is exactly equal to the normalized distance X.
Similarly to case 1, the diffusion current density is

J4,=—2eDC°/L . (12)
Comparison of J;; to J, leads to

Jin/Jpn=2 . (13)

B. Model for diffusion, convection, and electric field

Adding the convection and electric field terms to Eq.
(7), we have Eq. (4). A general solution of this differential
equation is

c=k1+kzeVSX, (14)
where V; is the sum of velocities of convection and elec-
tric migration,

V,=V+ME=(v+uE)L/D .

1. Case 1: Dissolution of the anode keeps the total number
of cations unchanged

By applying the boundary conditions (5) to Eq. (14),
the concentration is

v.(e"¥—1)

e=—— . (15)

e "—V,—1
In the case of pure diffusion v, =0, then lim, _ ,c=2X,
so Eq. (15) is reduced to Eq. (9). For practical units,

. VS(eVSx/L_l)
C=C'———— . (16)
e *—V,—1

This is the concentration expression that takes account of
diffusion, convection, and electric field when dissolution
of the anode keeps the total number of cations un-
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changed.
The current density in this case is

aC
=ze | =D~ +(v+pE)C
J,=ze O (v+uE)
2eC°DV?
=—— . a7n
Le *—V,—1)

The ratio of the current of diffusion, convection, and elec-
tric fields to the diffusion current J, /J;; leads to

2
6
V.

e
2e *—V,—1)

(18)

For | V,| << 1 by the Taylor series expansion of exp( V)
to the third order, Eq. (18) approximately leads to

3

Jl/Jdlz—V—_'_? .
s

(19)

In the case of pure diffusion, then lim, _ oJ,=J,, so

Egs. (18) and (19) are simplified to Eq. (10).
For large negative values of V; (e.g., ¥;— — « or very
large voltage), the current ratio is reduced to

s

V.
Jl/Jdlz—z— . (20)

2. Case 2: Dissolution of the anode keeps concentration
constant (the bulk concentration) at the anode

By applying the boundary conditions (6) to Eq. (14),
the concentration becomes
VX
c=te =D 1)
e *—1

In the case of pure diffusion, then limVS_,0c=X, so Eq.

(21) is reduced to Eq. (11). For practical units,

st/L__ 1)

c=cole 22)

e —1
This is also the concentration expression that applies for
a cell in which any transport mechanism (for example,
stirring) keeps the concentration of the cations un-
changed at an arbitrary distance L.
Similarly to case 1, the current density is

V,

Jy=Jdg—5—— . (23)
e *—1
For |V,| <<1 by the Taylor series expansion of exp(V,)
to the second order, the above equation approximately
leads to
2

Jz/szz—V—:l:E . (24)

In the case of pure diffusion, then lim, _ oJ,=J;, so

Eqgs. (23) and (24) are reduced to Eq. (12).
For large negative values of V (e.g., ¥,— — « or very
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large voltage), the current ratio is simplified to

JZ/JdeVS . (25)

III. RESULTS AND DISCUSSION
A. Concentration

1. Effect of convection

Equations (9) and (11) show that the concentrations of
cations for both cases 1 and 2 are linear across the cell for
pure diffusion. This conclusion matches the one first
treated by Chazalviel [Eq. (33) of Ref. [1]] if the charged
layer is negligible (this is true for a practical value of the
concentration). However, the mathematical treatments
are different. Equation (9) is an exact solution of the pure
diffusion equation, in contrast to Chazalviel’s approxi-
mate solution.

The concentration profiles as a function of the fluid
speed may be visualized when we plot Eq. (15) in Fig. 1,
and Eq. (21) in Fig. 2, respectively for case 1 and case 2.
When the flow is turned on, the concentration changes
and the concentration profile is no longer linear. If the
convection flows toward the cathode (i.e., v<0), the con-
centration near the cathode becomes larger than the one
without convection. Furthermore, as the fluid speed v
becomes more negative, the concentration near the
cathode increases. By contrast, when the convection
flows toward the anode (i.e., v>0), the concentration
near the cathode is less than the one without convection.
Furthermore, it decreases as the convection increases.

o931

N o

FIG. 1. The concentration profile in the cell for case 1, in
which dissolution of the anode keeps the total number of cat-
ions unchanged, as a function of convection velocity V.
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FIG. 2. The concentration profile in the cell for case 2, in
which dissolution of the anode keeps the concentration constant
at the bulk concentration at x =L, as a function of convection
velocity V.

2. Effect of dissolution of anode

In the case of pure diffusion, the concentration at the
anode is 2C° for the requirement of constant total cation
concentration (case 1). When convection is turned on,
the concentration near the anode increases (approaching
infinity for large flows) for flow towards the anode, while
it levels out for flow away from the anode (Fig. 1). The
concentration at the anode is always larger than the bulk
concentration regardless of both speed and direction of
convection.

Figure 2 shows that for case 2 dissolution of the anode
keeps the concentration constant (the bulk concentration)
at the anode, but the concentration near the anode
reaches the limit of the bulk concentration more quickly
as convection increases toward the cathode or dramati-
cally decreases as convection increases toward the anode.
In the limiting case V;— — «, then ¢— 1. The concen-
tration is uniform across the cell if the flow speed be-
comes very large. This demonstrates that the convection
forces cations moving toward the cathode to increase the
concentration near the cathode when convection flows to-
ward the cathode. However, when the convection flows
toward the anode, the concentration becomes less than
that without convection. Furthermore, as the fluid veloc-
ity increases, the concentration decreases, except at both
electrodes. Convection drives ions going away from the
cathode to decrease the concentration when convection
flows toward the anode.

The concentration profile for convection toward the
cathode in case 1 in Fig. 1 is similar to the concentration
map of Fleury, Kaufman, and Hibbert (Fig. 2 of Ref. [4]),
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but the mathematical expression (15) differs from theirs
[Eq. (28) of Ref. [4]].

3. Effect of voltage

It is seen from Egs. (15), (16), (21), and (22) that the
electric field or voltage has an effect on the concentration
map. As voltage increases, the electric field (E <0) be-
comes more negative. Then V| is more negative, so the
concentration near the cathode increases. This is because
the stronger electric field drives more cations to the
cathode.

B. Current

1. Effect of voltage

Chazalviel claimed that he derived the current expres-
sion for both diffusion and electromigration [Eq. (29) of
Ref. [1]], but his current is independent of the applied
potential. Why did he get this unpractical result? We
note that his current expression is equivalent to Eq. (10),
for pure diffusion in case 1.

Equations (20) and (25) show that the current driven by
diffusion, convection, and electric field increases as the
potential increases. When a greater voltage is applied to
the cell, the electric field and ¥V, become more negative,
so the current increases. This is also different from Fleu-
ry et al’s current expressions [Egs. (31) and (32) of Ref.
[4] ] which are also independent of the applied potential.
The same problem as that of Chazalviel is still in Fleury
et al.’s current expressions for both the general case and
the case of very small fluid speed, although both of them
have involved electric migration or potential in their
models. It may be demonstrated that Fleury et al.’s
current expressions also hold only for diffusion and con-
vection, as they are independent of potential. Notice that
Fleury et al.’s current for the case of very fast fluid flow,
which is a function of voltage [Eq. (41) of Ref. [4]],
conflicts with his current for the general case which is in-
dependent of voltage.

2. Effect of direction of convection

Equations (18), (19), (23), and (24) also show that
different directions of convection have different effects on
the current. The currents for diffusion, convection, and
electric field are larger than the diffusion currents when
convection flows toward the cathode (v <0, ¥V, <0), but
are less than the diffusion current when convection flows
toward the anode (v>0, V,>0). When convection is to-
ward the cathode, more cations are carried near the
cathode to react and the current increases. On the con-
trary, when convection is toward the anode, convection
drives cations away from the cathode, the concentration
near the cathode decreases, and the current decreases.

3. Effect of dissolution of anode

By comparison of the potential-independent diffusion
currents for different dissolutions of the anode (i.e., com-
parison of case 1 with case 2), the current J,;, is twice as
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much as the current J;,. Comparison of J; with J, leads
to
v,
e *—1

eVS—Vs—l

J /T =V, (26)

For |V,| <<1 by the Taylor series expansion of exp(V,)
the second order, the above equation approximately leads
to

J ST =V, +2 . 27

In the case of pure diffusion, then lim, _ oJ,/J,=2, so

Egs. (26) and (27) are simplified to Eq. (13).
For large negative values of V; (e.g., V,— — « or very
large voltage), then J, approximately equals J,.

4. Effect of bulk concentration

The current Egs. (10), (12), and (17) indicate that all
currents are proportional to the bulk concentration. Re-

moval of cations at the cathode is faster when the bulk
concentration increases.

C. Growth speed

As the growth speed is proportional to the current, the
current expressions (20) and (25) predict that the metal
tree grows faster when the applied potential or the con-
centration increases.

IV. CONCLUSION

From differential equations we set up models and
derive expressions of the concentration and current for
diffusion, convection, and electric fields in one dimension.
Our models are exact solutions of the differential equa-
tions. The effects of different models of dissolution of the
anode, directions, and speeds of the convection, and elec-
tric field lead to different current expressions. The as-
sumptions made in previous work are shown to lead to
expressions that are correct only for pure diffusion.
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